Egyenletrendszerek megoldásai, így áttételesen az algebrai varietások vizsgálata a matematika egyik legrégebbi problémája. A számelmélet sok alapvető kérdése nyilvánvaló módon átfogalmazható egy algebrai varietás racionális pontjainak létezésére vonatkozó kérdéssé. Például, az előző lapszámban Tóth Árpád cikkében taglalt, A. Wiles által 1994-ben belátott nagy Fermat-sejtés azzal ekvivalens, hogy az
egyenlet által meghatározott görbének nincs nem-triviális (az és triviális megoldásoktól különböző) megoldása felett; ennek köze van az e lapszámban részletesen vizsgált
egyenletű elliptikus görbék tulajdonságaihoz. Az együtthatók legkisebb közös többszörösével beszorozva látható, hogy minden -együtthatós egyenletrendszer ekvivalens egy -együtthatóssal. Amennyiben az egyenletrendszer homogén polinomokból áll (azaz minden tag össz-fokszáma megegyezik, mint pl. a Fermat-egyenletben), akkor az így kapott varietás projektív lesz: mivel ekkor minden megoldás és minden 0-tól különböző testbeli elemre is nyilván megoldás, ezért a „lényegesen” különböző (tehát, nem csak egy megoldáshármas minden elemét ugyanazzal az állandóval megszorozva kapott) megoldásokat úgy nyerjük, hogy a teljes megoldás-halmazt a multiplikatív csoporttal leosztjuk. Az így kapott megoldáshalmaz esetünkben a
racionális projektív sík részhalmaza. Hasonló érvelés bármely változószámú, csupa homogén polinomból álló rendszerre is érvényes, azzal a különbséggel hogy a megoldás-halmaz esetleg valamely -től eltérő dimenziós projektív tér része. Amennyiben az egyenleteink nem homogének, akkor egy egyszerű eljárással azzá tehetők: bevezetünk egy új változót, és minden monomot megszorzunk az új változó valamely hatványával. Az elliptikus görbe esetében például -vel jelölve az új változót ennek eredménye az
egyenlet. Természetesen, ezt az új változó lehető legalacsonyabb hatványaival hajtjuk végre.
Adott egész-együtthatós egyenletrendszer esetén bármely prímhatványra redukcióval származtathatunk egy -együtthatós egyenletrendszert, ahol a -elemű véges testet jelöli. Szintén érdekes kérdés az így nyert algebrai egyenletrendszerek megoldhatósága egyre bővebb véges testekben: az úgynevezett Hasse-elv értelmében ilyen (és valós) megoldások bizonyos rendszereiből ugyanis néha konstruálható egész értékű megoldás. Az egyenletrendszert ismét tekinthetjük egy algebrai varietás definiáló egyenleteinek felett. A véges testek feletti eset előnye, hogy a megoldás létezésén túl azok számát is vizsgálhatjuk, azaz bevezethetünk egy
leszámláló-függvényt, ahol az definiáló egyenleteinek feletti megoldás-halmazát jelöli.
Egy feletti algebrai varietáshoz természetes és egyértelmű módon társítható egy komplex algebrai varietás is: az azt megadó egyenletrendszer komplex test feletti megoldásainak halmaza. Egy sima komplex algebrai varietáson viszont többek között természetes módon adott egy komplex analitikus sokaság-struktúra is: ez azt jelenti, hogy minden pontjának egy elegendően szűk környezetében bevezethetők a megszokott -dimenziós komplex vektortéréhez hasonló koordináták. Amennyiben teljesít egy topologikus feltételt (az összefüggőséget), akkor az itt szereplő érték független a tekintett ponttól, és dimenziójának nevezzük. Ha pedig projektív, akkor a kapott kompakt. A továbbiakban -ről feltesszük, hogy sima és projektív.
A fentiek alapján vizsgálhatjuk az -hez rendelt komplex analitikus sokaságon az ilyen sokaságokhoz rendelt algebrai invariánsokat. Az egyik ilyen invariáns-fajta az úgynevezett komplex együtthatós de Rham kohomológia-csoportok, amelyek valójában véges dimenziós komplex vektorterek. Konkrétan, minden komplex -dimenziós sokasághoz és számhoz tartozik egy véges dimenziós komplex vektortér. A de Rham-kohomológia értelmezéséhez szükség van az úgynevezett komplex-értékű -adfokú differenciál-forma fogalmára. Lokális komplex analitikus koordinátákban egy -forma egy
alakú kifejezés valamely sima komplex-értékű függvényekre, ahol az összegzés az összes lehetséges
felbontásra1, és
vektorokra fut. Rögzített pár esetén a megfelelő formát tiszta -típusúnak nevezzük; komplex analitikus sokaságon egy -forma -típusú része jól meghatározott (azaz, a lokális koordinátarendszer választásától független). Az -n értelmezett -formák vektorterét -val, a tiszta -típusú formák vektorterét pedig -val jelöljük. Minden, a (2) egyenletet teljesítő rögzített számhármas esetén természetesen adódik tehát egy
dddd |
projektor, ahol lokálisan (1) által adott, és a fenti összegzés az összes rögzített hosszúságú vektorra fut. A leképezés globális jól-definiáltsága a komplex sokaság-struktúrából következik.
Mivel minden komplex analitikus sokaság egyúttal valós analitikus sokaság is, emiatt értelmezhető a differenciál-formákon egy természetes elsőrendű lineáris differenciál-operátor, a külső deriválás. Bizonyos értelemben a külső deriválás analóg a szemléletes geometriai perem-fogalmunkkal: ahogyan egy -dimenziós szimpliciális komplexus pereme egy -dimenziós szimpliciális komplexus, éppúgy egy differenciál-forma külső deriváltja egy -edfokú d differenciál-forma. Vagyis, minden -ra adódik
d
Egy komplex sokaság esetében ennek az operátornak a konkrét alakját a linearitás miatt elegendő (1) egy tagjára megadni:
ddddd | |
Az itt szereplő differenciálások a szokásos valós-képzetes felbontásban a
Cauchy—Riemann operátor, valamint annak konjugáltja:
Ahhoz, hogy a külső deriváltban kapott d és d formákkal bővített rendszert újra növekvő sorrendbe rendezhessük, a következő relációkat használhatjuk:
dd | dd | |
dd | dd | |
dd | dd |
Azt mondjuk, hogy zárt, ha d, és egzakt, ha d valamely formára. Kiderül, hogy minden egzakt forma zárt, ennek fordítottja azonban általában nem igaz. A -adik de Rham-kohomológia csoport pontosan azt méri, hogy ez mennyire nem teljesül: a vektorér definíció szerint a zárt -formák vektortere leosztva az egzakt -formák vektorterével.
Algebrailag az előbb bevezetett hányados minden további meggondolás nélkül értelmes, az azonban nem világos, hogy véges dimenziós-e. Ennek megvizsgálásához hasznos W. Hodge tétele, amely kimondja, hogy a fenti hányados izomorf egy bizonyos -en adott másodrendű elliptikus lineáris parciális differenciál-egyenlet megoldásterével. Az derül ki ugyanis, hogy ha sima projektív, akkor az komplex analitikus sokaságra a projektív térről egy speciális tulajdonságokkal rendelkező, úgynevezett Kähler-metrika öröklődik. A Kähler-metrika segítségével bevezethetjük az úgynevezett
Hodge—Laplace operátort a téren, ahol d-vel d adjungált operátorát jelöljük az metrikára. A következő eredmény ma már klasszikusnak számít [5]:
A elemeit feletti harmonikus -formáknak nevezzük. A kompakt sokaságokon definiált elliptikus lineáris parciális differenciálegyenletek általános elmélete ekkor garantálja, hogy de Rham kohomológia-terei véges dimenziósak.
A külső deriválásnak minden komplex sokaságon van egy természetes felbontása
d
alakban, ahol minden esetén
d | ||
d |
Hasonlóan a Hodge—Laplace operátorhoz, bevezethetjük a
Dolbeault—Laplace operátort. Könnyen látszik, hogy ez az operátor egy tiszta -típusú formát ugyanilyen típusú formába képez. A Kähler-geometria alapvető azonossága ekkor azt mondja ki, hogy
Ebből és az előző észrevételből azonnal következik, hogy a harmonikus -formák vektortere felbomlik típus szerint:
ahol a tiszta -típusú harmonikus formák tere. Továbbá, mivel könnyen láthatóan valós operátor (azaz, kommutál a komplex konjugálással), azért létezik egy
izomorfizmus. A fenti fogalmak és eredmények részletesebb kifejtése megtalálható például a [4] tankönyv bevezető fejezetében.
Az előző paragrafusban nyert struktúrát tetszőleges véges-dimenziós, komplex konjugálással ellátott komplex vektortéren értelmezhetjük: azt mondjuk, hogy -n egy
direkt-összeg felbontás megad egy tiszta -súlyú komplex Hodge-struktúrát, ha minden párosra teljesül a következő feltétel:
Ezzel a terminológiával élve tehát Hodge tétele azt mondja ki, hogy a de Rham kohomológia-téren létezik egy természetes tiszta súlyú Hodge-struktúra.
Kanyarodjunk vissza a kiinduló-pontunkhoz: a véges testek feletti algebrai varietások racionális pontjainak kérdéséhez, amelyről 1949-ben A. Weil négy mély tulajdonságot sejtett meg. A Weil-sejtések teljes bizonyítása P. Deligne nevéhez fűződik [1], amely eredményéért 1978-ban Fields-éremmel jutalmazták. Magukat a sejtéseket itt teljes részletességgel nem közöljük, csupán egy azokból következő, első látásra talán meglepő összefüggést egy algebrai varietás leszámláló-függvénye és az -hez rendelt komplex analitikus sokaság de Rham kohomológia-tereinek dimenziói között.
A tétel feltétele erősnek tűnhet, ám kiderül hogy az így is lefed számos érdekes esetet. Lássunk ezek közül egyet!
Deligne fenti tételének eredménye csak sima projektív varietásokra igaz. A tiszta Hodge-struktúra fogalmának létezik egy kiterjesztése, az úgynevezett kevert Hodge-struktúra, amelynek kidolgozása szintén Deligne érdeme [2], [3]. Bebizonyította többek között, hogy amennyiben nem sima vagy nem projektív, akkor a de Rham-kohomológia terein kevert Hodge-struktúra értelmezhető. Ennek a kevert Hodge-struktúrának a segítségével pedig bevezethető egy kétváltozós polinom. N. Katz általánosította Deligne tételeinek fenti következményét [6]: bebizonyította, hogy ha egy algebrai varietás leszámláló-függvénye valamely polinom, akkor
Ezen további elméletek magyarázata azonban már túlmutat jelen cikkünk keretein.
Szabó Szilárd
BME Matematika Intézet, Geometria Tanszék
Irodalomjegyzék
- 1
- P. Deligne, La conjecture de Weil: I, Publ. Math. IHES, 43, 1974.
- 2
- P. Deligne, Théorie de Hodge. II, Publ. Math. IHES, 40, 1971.
- 3
- P. Deligne, Théorie de Hodge. III, Publ. Math. IHES, 44, 1974.
- 4
- P. Griffiths, J. Harris, Principles of Algebraic Geometry, John Wiley & Sons, 1978.
- 5
- W. Hodge, The Theory and Application of Harmonic Integrals, Cambridge University Press, New York, 1941.
- 6
- N. Katz, -polynomials, zeta-equivalence and polynomial count varieties, függelék itt: T. Hausel, F. Rodriguez-Villegas, Mixed Hodge polynomials of character varieties, Invent. Math. 174, 2008.
Lábjegyzetek
- 1
- Remélhetőleg, az olvasó nem téveszti össze az itt bevezetett számot a korábban szintén -val jelölt prímhatvánnyal — mivel mindkét jelölés bevett az elméletben, a szerző nem kíván eltérni egyiktől sem.
- 2
- A tétel ennél gyengébb feltételek mellett is igaz, amelyek kimondása azonban itt túl technikai lenne.