Elemi matematika mesterfokon

Facebook
Nyomtatás
IMG 9737
Schultz János: Elemi matematika mesterfokon

Zalai Matematikai Tehetségekért Alapítvány, Nagykanizsa 2015.

A sikeres matematikai tehetséggondozáshoz biztosan szükséges állandó intézményi, szervezeti keret, anyagi forrás, megfelelő segédeszközök, társadalmi elismertség, de mindez egyáltalán nem garantálja a sikert. Ettől még nem lesznek motiváltak a tanulók, nem keresik lázasan a matematikai problémák megoldásait, nem vállalják szabadidejük terhére a külön foglalkozásokat, elméleti ismeretek megtanulását. Egész évszázadra – de talán még messzebbre is – visszamenőleg pontosan lehet tudni, hogy az igazán komoly tehetséggondozás motorja a tanár, aki maga köré gyűjti és meg is tartja az érdeklődő diákokat. Érdekes problémáival, a megfelelő nehézségű kihívásokkal olyan intellektuális élményhez, sikerhez juttatja őket, amely aztán évek múlva mindennapi munkájuk, hívatásuk alapja lesz.

Természetes, hogy minden tanár igyekszik tanítványainak a legmagasabb színvonalú képzést biztosítani. Különösen igaz ez akkor, ha érzékeli a diák kimagasló érdeklődését, képességeit.

A legjobb, műhelyteremtő tanárok azonban tudnak valamilyen további titkot. Úgy tudják felfűzni az elméleti ismereteket, a megoldandó matematikai feladatok sorozatát, hozzátéve saját egyéni látásmódjukat, előadásmódjukat, hogy ebből egy új minőség születhet meg. Az évek során megszoktuk, hogy a versenyeredmények listáján a felkészítő tanárok neve gyakran ismétlődik, néhányan különlegesen jól végzik ezt a munkát.

Ilyen tanár e kötet szerzője Schultz János is. A szegedi Radnóti Miklós Kísérleti Gimnázium meghatározó mate­ma­ti­ka­ta­ná­ra több mint 25 éve tanít az iskola speciális matematika tagozatán. A magyarországi középiskolai tehet­ség­gon­do­zás­ban az egyik legsikeresebb tanár. Szívós, folyamatos munkával fejleszti módszereit és feladattárát. Kollégáival egy nemzetközileg is mértékadó tehetséggondozó műhelyt alakítottak ki Szegeden. Sorra nevelték a kiváló versenyzőket, olimpikonokat, akik ma már fiatal kutató matematikusok, informatikusok szerte a nagyvilágban.

A kiváló tehetséggondozó tanárok ritkán teszik közkinccsé módszereiket. Megosztanak bizonyos szeleteket, érdekes problémákat, feladatsorokat, de az olyan átfogó feladatgyűjtemény, mint amelyre a Szerző vállalkozott, nagyon kevés található a könyvpiacon. Ez teszi nagyon különlegessé ezt a gyűjteményt.

A kötet előzménye a 2011-ben megjelent Elemi matematikai versenyfeladatok, amely szélesebb közönséget célzott meg. A hazai versenyfelkészítéshez kívánt segítséget nyújtani tanárnak és diáknak egyaránt.

Ez a jelenlegi, 2015-ös kötet már sokkal mélyebbre tekint. Olyan gondolkodási módszereket, bizonyítási eljárásokat, ötleteket tartalmaz, amelyeket nem ajánlhatunk a matematikai problémamegoldásban a kezdőknek. A két gyűjtemény rendszeres feldolgozásával egy egyedi utat ismerhetünk meg, amelyen Schultz tanár úr végigvezeti tanítványait. Ennél teljesebb az lehetne, ha a foglalkozásain is részt vennénk, és magunk is igyekeznénk megoldani ezeket a feladatokat.

A tematikus gyűjtemény hat fejezete alkalmazkodik a hazai és nemzetközi versenyek témaköreihez. Kombinatorika, kombinatorikus geometria, rácsgeometria; algebra, függvények; számelmélet; egyenlőtlenségek; síkgeometria; tér­geo­met­ria. Összesen 357 feladat.

A kötetnek sok erénye közül ki szeretném emelni a következőket:

  • A feladatok szinte mindegyike önmagában is érdekes, kerüli a sablonos, ismétlődő lépéseket. Mindegyik feladatnak legalábbis a megoldása, valamilyen módszerbeli sajátosságot, hozzáadott értéket tartalmaz.
  • A feladatok nem igénylik a fakultációs középiskolai tananyagon kívüli elméleti ismereteket. Csakúgy, mint az olimpiákon és az OKTV-ken, elsősorban a problémák valódi, mély megértése, változatos egyedi ötletek, módszerek vezethetnek a sikeres megoldáshoz.
  • Mindegyik feladatnak szerepel a könyvben a megoldása is. Igaz, sok esetben nagyon tömören, kizárólag a lényeges megoldási elemek közlésével, így ezeknek a megoldásoknak a feldolgozása is része a tanulási folyamatnak.
  • A kötet ábrái, tördelése áttekinthető. A képletek jól olvashatóak. Az egész kötet harmonikus, esztétikus, bárhol kinyitva egy-két perc alatt magával ragadja az Olvasót.

Semmiképpen sem javasolható a gyűjteménynek, mint egy regénynek, vagy novellás kötetnek az „olvasgatása”. Igazán hasznos tudást akkor adhat, ha a feladatokat alaposan igyekszünk megérteni, egyedül megoldani, megfogalmazni azokat a nehézségeket, amelyeken nem tudunk átlépni. Ha többszöri próbálkozás után sem sikerül a megoldás, de már részleteiben is ismerjük a feladat feltételeit, az állítást, akkor érdemes elolvasni a (részben) kidolgozott megoldásokat.

Végül álljon itt egy feladat a gyűjteményből, amely nehézségével és emellett egyszerű megfogalmazásával jól példázza a szerző tudatosságát, matematikai stílusát:

Egy 17 tagú társaságban mindenkinek 4 ismerőse van a társaság tagjai közül.  Igazoljuk, hogy akkor vannak ketten, akik nem ismerik egymást és nincs közös ismerősük sem a társaságban. (Az ismeretség kölcsönös.) – A megoldás a könyv 115. oldalán olvasható.

Kiss Géza
Budapesti Fazekas Mihály Gyakorló Gimnázium

A rovat ajánlott cikkei
Vegyészekhez beépített kiküldött tu­dó­sí­tónk (korábbi, az ajánlott irodalomban feltüntetett írásai nyomdokain) újfent kincset talált, amit szeretne megosztani olvasóinkkal. A jó szívvel ajánlott könyvecske tulajdonképpen egy mese – gyermekeknek, vagy inkább felnőtt, jelenlegi, jövendő és volt kutatóknak a tudományról.
Nemrég jelent meg A rövidítés tudománya – Hatékony gondolkodás a mate­ma­ti­ká­ban és a mindennapi életünkben című könyv. Alapgondolata, hogy a jól megválasztott rövidítés; jelölés, diagram, eljárás vagy definíció egyszerre gyorsítja fel a gondolkodást és teszi lehetővé az összetett problémák átlátható kezelését. A szerző, Marcus du Sautoy neve Magyar­or­szá­gon is ismert: a Park Kiadónál korábban megjelent tőle A prímszámok zenéje (2014) és A kreativitás kódja (2022) – mindkettő közérthető, tudo­mány­nép­sze­rű­sí­tő stílusban.
Fényes Imre (1917–1977) a magyar fizika egyik legendás alakja, ma is hatással van tanítványaira. Ropolyi László és Szegedi Péter most megjelent válogatása bemutatja 50 évvel ezelőtti termo­di­na­mi­kai és kvantummechanikai eredményeit, köztük kapcsolatát Heisenberg vagy éppen Neumann gondolataival.
A lineáris algebra a BME-n összeforrt Wettl Ferenc nevével. Könyvének bevezető gondolata: érthetővé tenni azt, amit sokan örök misztikumként élnek meg. Jóllehet ennek a terjedelmes témának az egyetlen tankönyvbe integrálása szinte lehetetlen vállalkozás volt a szerző részéről, mégis sikeresnek bizonyult, hiszen rövid időn belül már a második kiadására is sor került.
A kecskeméti MATEGYE Alapítvány a 2020-ban megjelent Hibás feladatmegoldások az általános iskolában című könyvének folytatásaként adta ki 2025-ben Orosz Gyula: Hibás feladatmegoldások a középiskolában című munkáját. Mindkét mű rendhagyó módon közelíti meg a matematikai gyakorlást: nem csak az „egyik helyes” útvonalat, azaz a megoldást mutatják be, hanem a tanulók és tanárok számára egyaránt rendkívül értékes hibaanalízist kínálnak...
Hírlevél feliratkozás