
1

The SIAM John von Neumann Lecture

Margaret H. Wright

Computer Science Department

Courant Institute of Mathematical Sciences

New York University

International Congress on Industrial and Applied Mathematics

Valencia, Spain

July 16, 2019

2

I’m honored beyond words to be giving this lecture.

Thank you, SIAM!

3

This talk will describe a recently encountered real-world

applied mathematics problem and its connections with the

work of John von Neumann.

Born in Hungary in 1903, John von Neumann exhibited signs

of genius at an early age and never ceased to do so. He is

known for foundational contributions to quantum mechanics,

geometry, ergodic theory, game theory, error analysis, duality,

and the design of early computers. (This is a partial list!)

4

Hence we have room for only two items, chosen from many:

And we need a change of title:

A Hungarian mini-feast of applied mathematics

5

How it began: in late 2017, Russ Caflisch, Director of the

Courant Institute, wrote:

I received a request from the Department of Sanitation in

New York City for help with an optimization problem.

DSNY has 104 employees, who can request job location

changes. The priority of these choices is supposed to be

ordered by seniority. But they have the issue that a job

change by a lower priority employee could open up a position

that is desired by a higher priority employee. So this requires

iteration, which they now perform by hand. They are looking

for a researcher who could work with them. Are you

interested?

6

Moved by Bell Labs nostalgia for unexpected down-to-earth

real problems, I was very interested. Because DSNY had

mentioned optimization, my initial impression was that their

problem would include something like

minimizex f(x) subject to constraints on x.

But early conversations with DSNY colleagues made clear

that they were not asking about a “standard” optimization

problem.

Hence we entered two familiar stages of work on real-world

problems: learning new languages in order to define the

problem.

7

Useful general information about the New York Sanitation

Department:

• Largest sanitation company in the world;

• Among its responsibilities: garbage collection, recycling,

street cleaning, snow removal in 6300 miles of streets;

• Approximately 10,000 employees, 275 collection trucks;

• Handles more than 10,500 tons of garbage and 1,760

tons of recyclables per day;

• More than 40,000 (!) people took the most recently

offered exam for employment.

8

9

Here are some facts relevant to the transfer problem.

• There are 59 “garages” in the five boroughs of New York

City, each with multiple sections, adding up to

approximately 1000 different locations.

• Each sanitation worker has a “home location”.

• Several times per year, sanitation workers can request to

change their home locations.

• A sanitation worker seeking a transfer submits a (paper)

form, listing up to three different locations in order of

priority.

10

• A worker with a home location may request a transfer,

but he/she cannot be forced to move if not offered a

preferred location.

• The list of workers seeking transfers is prioritized by

seniority (a unique positive integer for each worker).

• If a worker does not receive a preferred location in a

given round of transfers, the request carries forward to

the next round.

The mathematical question is: How does DSNY decide on the

new assignments?

NB: This is not a “big data” problem!

11

Here is an exact quote from the official “DSNY Business

Rules for Transfers”:

The idea is to ensure that a person’s highest available choice

on their list is fulfilled, based on seniority, availability, and

freed-up positions during the transfer process.

This language seems to define an objective function and some

constraints, and thus appears to pose an optimization

problem. But it is NOT a standard optimization problem.

This realization and its implications led to a happy “aha!”

moment.

12

The DSNY problem is a matching problem.

This is the first link to von Neumann: matching problems fall

into the field of game theory, and

modern game theory began with John von Neumann!!

His 1928 article “Theory of Parlor Games” proved the famous

minimax theorem, and his 1944 book with Morgenstern,

Theory of Games and Economic Behavior, is widely

considered to have created the now-lively field of game theory.

Discovering that the real-world problem you want to solve

corresponds to a mathematical formulation is one of the great

joys of applied mathematics.

13

There is an enormous literature today about game theory,

especially in economics, and about matching problems,

especially in computer science.

Some well known instances of matching problems are:

selection of locations for medical residencies; organization of

donors/recipients of kidney transplants; assignment of

students to schools; and allocation of housing by universities.

The DSNY transfer problem can be viewed as a certain kind

of housing allocation problem.

So let’s talk about housing allocation problems.

14

A (generic, oversimplified) housing allocation problem

includes:

• a set I of “agents” (the term to be used from now on in

this talk), the i-th denoted by ai;

• a set H of houses, each denoted in this talk by a capital

letter;

• A preference profile for each agent, expressing the agent’s

(strict) preferences with respect to houses.

Note that the houses don’t care who lives in them. (In some

matching problems, both sides have preferences.)

A matching is an assignment of houses to agents.

An allocation is a matching of agents and houses so that each

agent is assigned at most one house and no house is assigned

to more than one agent.

15

A mechanism is a systematic procedure (i.e., algorithm) that

produces a matching.

What are the properties of a “good” matching?

A matching is Pareto-efficient if there is no other matching

that makes every agent weakly better off and at least one

agent strictly better off.

A matching is strategy-proof if no agent can benefit by

misrepresenting his/her preferences.

A matching is individually rational if no existing agent strictly

prefers his/her original house to the one resulting from the

mechanism.

How to find a mechanism that produces matchings with these

desirable properties?

16

Start with the simplest idea.

The most obvious mechanism is called serial dictatorship.

We go down the list of agents in priority order and give each

agent his/her top-ranked house that is still available.

This simple mechanism has many desirable properties, but its

assumptions (e.g., that all houses are initially available) do

not reflect most real-world instances.

17

So we make the problem more realistic by assuming that

some houses are occupied and some of the agents (“sitting

tenants”) who live there would prefer to move.

One possibility: let agents who have houses and want to

move treat their houses as available. Priorities are then

assigned to those agents, and we apply serial dictatorship with

the new priorities and a new list of available houses.

But this is likely to violate individual rationality, since an

existing tenant may end up with a house that he/she likes less

than the one he/she has now. This property of the

mechanism would create a bad situation because unsatisfied

sitting tenants would be unhappy.

18

We need a system where existing tenants can move, but can

stay put if nothing preferable is available for them. (This

policy is typical in university housing draws.)

There is such a system!

A 1999 paper in the Journal of Economic Theory by

Abdulkadiroğlu and Sönmez, “House allocation with existing

tenants”, presented a mechanism with an evocative name:

You Request My House; I Get Your Turn

or, for short, YRMH-IGYT.

(I can’t work out how to pronounce this acronym!)

19

Here is how YRMH-IGYT works.

We process the list of agents in a dynamic order, as follows.

An initial list consists of the agents in priority order.

Repeat steps 1–3 until no more agents remain. . .

1. Assign the first agent on the dynamic list to his/her top

available house; similarly for the second agent on the dynamic

list; and so on, until reaching an agent (say, agent k) whose

top choice is a house currently occupied by an agent (say,

agent m) who is lower on the dynamic list, i.e., has a lower

priority.

Agent k is requesting the house of agent m (who has lower

priority), so that agent k is now “you” in the YRMH-IGYT

terminology. Agent m, whose house is being requested by

agent k, is “I”.

20

2. This is the key step. Agent m “gets the turn” of agent k,

and moves just before agent k in the dynamic list, which is

now reordered. Then proceed from step 1.

3. If at any point a cycle forms, it must consist of agents,

each of whom requests the house of the agent who is next in

the cycle. Remove all agents in the cycle by assigning them

to the houses they request and return to step 1 with the

updated list of agents and houses.

21

A&S note that the YRMH-IGYT algorithm produces the same

result as the “Top Trading Cycles” (TTC) algorithm,

described by Scarf and Shapley in 1974 in the Journal of

Mathematical Economics, where it is attributed to Gale.

The TTC algorithm is described and implemented in terms of

a directed graph representing the agents and houses.

It sounds very different from YRMH-IGYT, but gives the

same result as YRMH-IGYT. (This is a theorem.)

YRMH-IGYT is more intuitive to many people; using TTC

makes proofs about the results easier.

Both are tricky to implement.

22

Example: 5 agents (a1, a2, a3, a4, a5), and 5 houses (A,B,C,D,E)

Priority order of agents: 1,2,3,4,5

House E is vacant; agent a5 has no house (e.g., a new employee).

Agent preferences:

a1 a2 a3 a4 a5

B A E A E

D C

Starting configuration:

Agents a1 a2 a3 a4 a5

Houses A C D B *

23

Start YRMH-IGYT with the highest-priority agent:

1. a1 ‘requests’ house B, occupied by a4. So a4 gets the turn of a1.

2. a4 requests house A, occupied by a1, so a1 and a4 form a cycle and

can swap. Remove a1 and a4 from the proceedings.

Three agents are still in play, with priority list (2, 3, 5). Recall that the

original preferences for these three are

a2 a3 a5

A E E

D C

The current configuration is

Agents a2 a3 a5

Houses C D *

24

3. a2 (the highest-priority remaining agent), who occupies house C, has

the next turn. a2’s first choice is House A, but it is out of the picture.

a2’s second choice is House D, which is occupied by a3. Hence a2 is

requesting the house of a3, and a3 takes the turn of a2, i.e., goes

before a2.

4. In a3’s turn, he/she wants house E, which is vacant. So a3 moves

out of house D and moves into house E. Now a2 can move into D

and move out of C.

5. a5 is next (and last). a5’s first choice is House E, but it is occupied

by a3. a5’s second choice is House C, which is vacant, so a5 gets

House C.

Here is the final configuration.

Agents a1 a2 a3 a4 a5

Houses B D E A C

25

How does this compare with the starting configuration?

• a1 is strictly better off (gets B, first and only choice)

• a2 is strictly better off (gets second choice)

• a3 is strictly better off, gets E, his/her first and only

choice)

• a4 is strictly better off (gets A, first and only choice)

• a5 is strictly better off (gets second choice, House C);

initially had no house.

Looks good!

Is the DSNY problem “solved”?

26

Unfortunately, no.

On the bright side, the YRMH-IGYT mechanism gives a

matching that is Pareto-efficient, strategy-proof, and

individually rational.

Full disclosure: there are other special features of the DSNY

problem, not discussed here, that make it more complicated.

In any case it turns out, for “personnel” reasons, that

YRMH-IGYT does not always produce results that are

“acceptable” for the DSNY.

This phenomenon (discovering an unexpected, undesirable

property of a mathematical model) often emerges when the

model doesn’t include all the complicated features of reality.

(Typically, the model does not have enough constraints.)

27

Consider the following example 1, which is totally unrealistic

but illustrates a complication.

3 agents (a1, a2, a3) and 4 houses (A,B,C,D), where house D is

initially vacant.

Here is the initial configuration.

Agents a1 a2 a3 ∗

Houses A B C D

The priority of the agents is 1, 2, 3.

Here are their housing preferences.

a1 a2 a3

C D D

28

Using YRMH-IGYT,

1. We start with a1, who occupies house A and wants house

C. House C is occupied by a3, so a3 takes a1’s turn and

goes first.

2. Since a3 wants (vacant) house D, a3 gets house D,

freeing house C. This means that a1 can have house C.

This takes care of a1 and a3.

3. The only remaining agent is a2, who wants house D,

which was initially vacant. But D is now occupied by a3,

so a2 does not get his/her choice.

29

The result is

Agents a1 a2 a3

Houses C B D

The blue color indicates that there was no change for a2, who

is especially unhappy because the house he/she wanted most

was given to a lower-priority person.

But a1, the highest-priority agent, is happier because he/she

has moved to house C.

And a3 is happier because of being able to move to house D.

30

Is the difficulty caused because house D was initially vacant?

Consider a slightly modified problem with 3 agents and 3

houses, with initial configuration:

Agents a1 a2 a3

Houses A B C

The preferences are different:

a1 a2 a3

C A A

Using YRMH-IGYT, when a1 requests house C (initially

occupied by a3), a3 takes the turn of a1. This means that

agents a1 and a3 will swap, and a3 will get house A.

31

The result is

Agents a1 a2 a3

Houses C B A

Once again, there was no change for a2.

House A, which a2 wants, is now occupied by a3, and a2 must

stay in his/her original location.

a2 might regard this as “unfair”, even though a1 got what

he/she wanted.

DSNY’s official policy office ruled that the ‘optimal’ solution

in this case is that no one moves.

32

Further thinking is needed about the overall DSNY goal

quoted at the beginning:

The idea is to ensure that a person’s highest available choice

on their list is fulfilled, based on seniority, availability, and

freed-up positions during the transfer process.

Even a solution that is Pareto-efficient, individually rational,

and strategy-proof does not appropriately respect the seniority

of agents in all circumstances.

Something to ponder: Is there a mathematical

characterization of what DSNY really wants from the transfer

process?

Being continued.

33

At this stage perhaps you are wondering: is there only one

major item (game theory) in this mini-feast, connecting John

von Neumann’s contributions and the DSNY problem?

By no means! (But there’s only time for one more.)

Von Neumann’s influences on computing are broad, diverse,

and consistently at the highest level: he was a major architect

for the EDVAC (Electronic Discrete Variable Computer)

computer in the mid-1940s; he was an early authority on

issues in computer arithmetic, etc., etc.

Von Neumann’s work with EDVAC also provides an inspiring

“deep dive” example of addressing the need to produce

software that actually solves the problem. A theorem, even a

published algorithm, is not usually enough.

34

Von Neumann’s sometimes overlooked legacy is:

HE WROTE CODE.

35

In a fascinating 1970 paper “Von Neumann’s first computer

program”, Donald Knuth describes in detail a program written

by John von Neumann for sorting—probably not the topic you

expect—in the context of his work during 1944–45 with

EDVAC.

Von Neumann chose to write a program for sorting because

he wanted to know whether the proposed EDVAC instructions

were adequate (and fast enough) to perform logical control of

complex processes.

He not only wrote his own code, he also created the

algorithm—a “divide and conquer” algorithm, today called

“merge sort”.

36

Knuth’s paper, a tour de force, reviews von Neumann’s code

line by line, explaining certain choices and respectfully

commenting that a few aspects could be improved (!).

What’s the connection to DSNY? Sorting is an essential

ingredient in all the code written (so far) for the transfer

problem because of the need to keep track of multiple

dynamic priority lists.

The burden for today’s programmer who wants to include a

sort in his/her code is tiny compared to what von Neumann

needed to do.

Anyone in this audience who writes code and needs to sort

will almost certainly be using a high-level language (perhaps

one of the following), all of which provide library routines for

sorting.

37

• Matlab. A multi-paradigm numerical computing environment and

proprietary programming language.

The command B = sort(A) would almost certainly be adequate, but

one also has the choice of sorting along different dimensions and of

specifying additional parameters for the sort.

• Python. Python is an interpreted, high-level, general-purpose

programming language. . . Python’s design philosophy emphasizes

code readability. . .

[from documentation of sort] The sort() method sorts the elements

of a given list in a specific order. . . You can also use Python’s in-built

function sorted() for the same purpose.

• R. R is a programming language and free software environment for

statistical computing and graphics.

To sort a data frame in R, use the order() function. By default,

sorting is ASCENDING. Prepend the sorting variable by a minus sign

to indicate DESCENDING order.

38

• Julia. Julia aims to create an unprecedented combination of ease of

use, power, and efficiency in a single language.

[about sort] By default, Julia picks reasonable algorithms and sorts in

standard ascending order

• Fortran. Fortran is a general-purpose, compiled imperative

programming language that is especially suited to numeric

computation and scientific computing

Basic sorting and searching routines for vectors on github.

39

In contrast, Von Neumann wrote a 23-page memo, then

classified as “top secret”, describing essentially every aspect

of his code.

Knuth says, after his dissection of von Neumann’s program,

Like nearly all programs, this one has a bug.. . . If von

Neumann had had an EDVAC on which to run his

program, he would have discovered debugging!

Here (from Knuth’s paper) is a facsimile of the first page of

von Neumann’s program, which “represents a significant step

in the evolution of computer organization as well as of

programming techniques”.

40

41

The many layers of von Neumann’s program make it a perfect

dessert in our Hungarian mini-feast.

42

Summary:

Trying to solve real-world problems is one of the things that

SIAM (and all the societies in ICIAM) do best.

Tracing intellectual threads is complicated, especially when

the source of ideas is von Neumann, who made so many

contributions to so many different areas.

But it seems clear that, after more than 70 years, John von

Neumann’s work, ranging from the foundations of game

theory to nitty-gritty coding, is visible and remains deeply

influential in an amazingly wide range of areas in mathematics

and computer science (including the DSNY transfer problem).

Thank you, John von Neumann!

